2 research outputs found

    Building maps of large environments using splines and geometric analysis

    Full text link
    Recently, a novel solution to the Simultaneous Localization and Map building (SLAM) problem for complex indoor environments was presented, using a set of splines for describing the geometries detected by a laser range finder mounted on a mobile platform. In this paper, a method for exploiting the geometric information underlying in these maps in the data association process is described. The proposed approach uses graphs of relations between simple features extracted from the environment, and a bit encoded implementation for obtaining a maximum clique that relates observations with previously visited areas. This information is used to update the relative positions of a collage of submaps of limited size

    Robot Goes Back Home Despite All the People

    Full text link
    We have developed a navigation system for a mobile robot that enables it to autonomously return to a start point after completing a route. It works efficiently even in complex, low structured and populated indoor environments. A point-based map of the environment is built as the robot explores new areas; it is employed for localization and obstacle avoidance. Points corresponding to dynamical objects are removed from the map so that they do not affect navigation in a wrong way. The algorithms and results we deem more relevant are explained in the paper
    corecore